Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1).
نویسنده
چکیده
The spatial structure of color cell receptive fields is controversial. Here, spots of light that selectively modulate one class of cones (L, M, or S, or loosely red, green, or blue) were flashed in and around the receptive fields of V-1 color cells to map the spatial structure of the cone inputs. The maps generated using these cone-isolating stimuli and an eye-position-corrected reverse correlation technique produced four findings. First, the receptive fields were Double-Opponent, an organization of spatial and chromatic opponency critical for color constancy and color contrast. Optimally stimulating both center and surround subregions with adjacent red and green spots excited the cells more than stimulating a single subregion. Second, red-green cells responded in a luminance-invariant way. For example, red-on-center cells were excited equally by a stimulus that increased L-cone activity (appearing bright red) and by a stimulus that decreased M-cone activity (appearing dark red). This implies that the opponency between L and M is balanced and argues that these cells are encoding a single chromatic axis. Third, most color cells responded to stimuli of all orientations and had circularly symmetric receptive fields. Some cells, however, showed a coarse orientation preference. This was reflected in the receptive fields as oriented Double-Opponent subregions. Fourth, red-green cells often responded to S-cone stimuli. Responses to M- and S-cone stimuli usually aligned, suggesting that these cells might be red-cyan. In summary, red-green (or red-cyan) cells, along with blue-yellow and black-white cells, establish three chromatic axes that are sufficient to describe all of color space.
منابع مشابه
Color contrast in macaque V1.
We explored the neural basis for spatial color contrast (red looks redder surrounded by green) and temporal color contrast (red looks redder if preceded by green) in primary visual cortex (V1) of the alert macaque. Using pairs of stimuli, we found a subset of neurons that gave stronger responses to sequences of red and green spots and stronger responses to adjacent red and green spots. These ce...
متن کاملCone inputs in macaque primary visual cortex.
To understand the role of primary visual cortex (V1) in color vision, we measured directly the input from the 3 cone types in macaque V1 neurons. Cells were classified as luminance-preferring, color-luminance, or color-preferring from the ratio of the peak amplitudes of spatial frequency responses to red/green equiluminant and to black/white (luminance) grating patterns, respectively. In this s...
متن کاملNeural mechanisms for color perception in the primary visual cortex.
New neurophysiological results show the existence of multiple transformations of color signals in the primary visual cortex (V1) in macaque monkey. These different color mechanisms may contribute separately to the perception of color boundaries and colored regions. Many cells in V1 respond to color and to black-white (luminance) patterns. These neurons are spatially selective and could provide ...
متن کاملSpatial and temporal properties of cone signals in alert macaque primary visual cortex.
Neurons in the lateral geniculate nucleus cannot perform the spatial color calculations necessary for color contrast and color constancy. Under neutral-adapting conditions, we mapped the cone inputs (L, M, and S) to 83 cone-opponent cells representing the central visual field of the next stage of visual processing, primary visual cortex (V1), to determine how the color signals are spatially tra...
متن کاملThe orientation selectivity of color-responsive neurons in macaque V1.
Form has a strong influence on color perception. We investigated the neural basis of the form-color link in macaque primary visual cortex (V1) by studying orientation selectivity of single V1 cells for pure color patterns. Neurons that responded to color were classified, based on cone inputs and spatial selectivity, into chromatically single-opponent and double-opponent groups. Single-opponent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2001